Bessel Sequence and Finite Normalized Tight Frames

نویسنده

  • Ajay Kumar
چکیده

In this article, we show that a finite dimensional Hilbert space can have an infinite Bessel sequence, but a normalized Bessel sequence in a finite dimensional Hilbert space must be of finite length. A relation between the dimension of a given finite dimensional Hilbert space and the bound of any finite normalized tight frame for the underlying space is obtained. Also some properties of the frame operator and the Bessel sequence are discussed for finite normalized tight frame with some examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A recursive construction of a class of finite normalized tight frames

Finite normalized tight frames are interesting because they provide decompositions in applications and some physical interpretations. In this article, we give a recursive method for constructing them.

متن کامل

Constructing Finite Frames via Platonic Solids

Finite tight frames have many applications and some interesting physical interpretations. One of the important subjects in this area is the ways for constructing such frames. In this article we give a concrete method for constructing finite normalized frames using Platonic solids.

متن کامل

Expansion of Bessel and g-Bessel sequences to dual frames and dual g-frames

In this paper we study the duality of Bessel and g-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.

متن کامل

On dual shearlet frames

In This paper, we give a necessary condition for function in $L^2$ with its dual to generate a dual shearlet tight frame with respect to admissibility.

متن کامل

Duality of $g$-Bessel sequences and some results about RIP $g$-‎frames

‎In this paper‎, ‎first we develop the duality concept for $g$-Bessel sequences‎ ‎and Bessel fusion sequences in Hilbert spaces‎. ‎We obtain some results about dual‎, ‎pseudo-dual ‎and approximate dual of frames and fusion frames‎. ‎We also expand every $g$-Bessel ‎sequence to a frame by summing some elements‎. ‎We define the restricted isometry property for ‎$g$-frames and generalize some resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015